Calculates the posterior mean of the difference between left- and right-derivatives at an exposure level for the detection of change points.
Arguments
- w
A scalar of exposure level of interest.
- w_obs
A vector of observed exposure levels of all samples.
- y_obs
A vector of observed outcome values of all samples.
- gps_m
An S3 gps object including: gps: A data.frame of GPS vectors. - Column 1: GPS - Column 2: Prediction of exposure for covariate of each data sample (e_gps_pred). - Column 3: Standard deviation of e_gps (e_gps_std) used_params: - dnorm_log: TRUE or FLASE
- hyperparam
A vector of hyper-parameters in the GP model.
- kernel_fn
The covariance function.
- kernel_deriv_fn
The partial derivative of the covariance function.
Examples
# \donttest{
set.seed(847)
data <- generate_synthetic_data(sample_size = 100)
gps_m <- estimate_gps(cov_mt = data[,-(1:2)],
w_all = data$treat,
sl_lib = c("SL.xgboost"),
dnorm_log = FALSE)
#> Loading required package: nnls
wi <- 8.6
val <- compute_rl_deriv_gp(w = wi,
w_obs = data$treat,
y_obs = data$Y,
gps_m = gps_m,
hyperparam = c(1,1,2))
# }