Skip to contents

GPCERF 0.2.4 (2024-04-09)

CRAN release: 2024-04-15

Changed

  • Dr. Boyu Ren is now the package maintainer.

GPCERF 0.2.3 (2024-03-02)

CRAN release: 2024-03-02

Changed

  • estimate_cerf_nngp takes outcome_col, treatment_col, and covariates_col names as inputs.
  • estimate_cerf_gp takes outcome_col, treatment_col, and covariates_col names as inputs.

Added

  • estimate_cerf_gp and estimate_cerf_nngp have notes on selecting w.

GPCERF 0.2.2 (2024-02-16)

CRAN release: 2024-02-16

Changed

  • n_thread -> nthread in estimate_noise_nn documentation.

GPCERF 0.2.1 (2023-01-15)

CRAN release: 2023-03-15

Changed

  • full GP –> standard GP
  • plots of exposure response function objects include covariate balance.
  • formula is no longer need in nn functions.
  • estimate_gps now returns the used exposure level, too.
  • train_gps –> estimate_gps
  • The nearest neighbor approach does not get expand as an input parameter (n_neighbor * expand –> n_neighbor).
  • The weighted covariate balance now is computed using the wCorr package.

GPCERF 0.2.0 (2023-01-22)

CRAN release: 2023-01-22

Changed

  • estimate_noise_nn now allows for parallelization with an added argument nthread for the number of CPUs used in parallel.
  • estimate_mean_sd_nn now only computes the posterior variance.
  • find_optimal_nn now returns the posterior mean and covariate balance for the optimal hyper-parameter values.
  • Add an argument kernel_fn to all nn related functions to allow for user-defined kernel functions.
  • Add an argument formula to all nn related functions to allow for user-defined design matrix.
  • find_optimal_nn becomes an internal function.
  • estimate_noise_gp and estimate_noise_nn become internal functions.
  • estimate_mean_sd_nn becomes an internal function.
  • compute_weight_gp becomes an internal function.
  • compute_w_corr accepts w and confounders separately. It also normalizes w internally.
  • compute_posterior_sd_nn becomes an internal function.
  • compute_posterior_m_nn becomes an internal function.
  • compute_derive_weights_gp becomes an internal function.
  • compute_m_sigma becomes an internal function.
  • compute_inverse becomes an internal function.
  • In compute_m_sigma, tuning option does not have a default value.
  • train_gps does not have default values.
  • train_gps accepts vector of the SuperLearner package’s libraries.
  • train_GPS -> train_gps

GPCERF 0.1.0 (2022-07-02)

CRAN release: 2022-07-02

Changed

  • nn_cp_calc -> compute_rl_deriv_nn
  • deriv_nn_fast -> compute_deriv_nn
  • get_nn_sd -> compute_posterior_sd_nn
  • nn_sigma_est -> estimate_noise_nn
  • idx.all -> idx_select
  • GPS.new -> GPS_w
  • w.new -> w
  • get.nn.fast -> compute_posterior_m_nn
  • w.est -> w
  • nn_balance -> best_nn_cb

Added

  • Package website using pkgdown
  • Logger functions
  • compute_sd_gp function

GPCERF 0.0.1 (2022-03-31)

Changed

  • Removed examples from internal functions
  • w.obs -> w_obs
  • inv.Sigma.obs -> inv_sigma_obs
  • obs.use -> scaled_obs
  • tune.fn -> compute_m_sigma
  • GP.weights.test -> compute_weight_gp
  • data.generate -> generate_synthetic_data

Added

  • estimate_noise function
  • estimate_cerf_gp function
  • compute_inverse function
  • compute_w_corr function