Compiles pseudo population based on the original population and estimated GPS value.
Arguments
- data_obj
A S3 object including the following:
Original data set + GPS values
e_gps_pred
e_gps_std_pred
w_resid
gps_mx (min and max of gps)
w_mx (min and max of w).
- ci_appr
Causal inference approach.
- gps_density
Model type which is used for estimating GPS value, including
normal
andkernel
.- exposure_col_name
Exposure data column name.
- nthread
An integer value that represents the number of threads to be used by internal packages.
- ...
Additional parameters.
Value
compile_pseudo_pop
returns the pseudo population data that is compiled based
on the selected causal inference approach.
Details
For matching approach, use an extra parameter, bin_seq
, which is sequence
of w (treatment) to generate pseudo population. If NULL
is passed the
default value will be used, which is
seq(min(w)+delta_n/2,max(w), by=delta_n)
.
Examples
# \donttest{
set.seed(112)
m_d <- generate_syn_data(sample_size = 100)
m_xgboost <- function(nthread = 1,
ntrees = 35,
shrinkage = 0.3,
max_depth = 5,
...) {SuperLearner::SL.xgboost(
nthread = nthread,
ntrees = ntrees,
shrinkage=shrinkage,
max_depth=max_depth,
...)}
data_with_gps <- estimate_gps(.data = m_d,
.formula = w ~ cf1 + cf2 + cf3 +
cf4 + cf5 + cf6,
gps_density = "normal",
sl_lib = c("m_xgboost")
)
#> Error in get(library$library$predAlgorithm[s], envir = env): object 'm_xgboost' not found
pd <- compile_pseudo_pop(data_obj = data_with_gps,
ci_appr = "matching",
gps_density = "normal",
bin_seq = NULL,
exposure_col_name = c("w"),
nthread = 1,
dist_measure = "l1",
covar_bl_method = 'absolute',
covar_bl_trs = 0.1,
covar_bl_trs_type= "mean",
delta_n = 0.5,
scale = 1)
#> Error in compile_pseudo_pop(data_obj = data_with_gps, ci_appr = "matching", gps_density = "normal", bin_seq = NULL, exposure_col_name = c("w"), nthread = 1, dist_measure = "l1", covar_bl_method = "absolute", covar_bl_trs = 0.1, covar_bl_trs_type = "mean", delta_n = 0.5, scale = 1): object 'data_with_gps' not found
# }