Estimates GPS value for each observation using normal or kernel approaches.
Usage
estimate_gps(
.data,
.formula,
gps_density = "normal",
sl_lib = c("SL.xgboost"),
...
)
Arguments
- .data
A data frame of observed continuous exposure variable and observed covariates variable. Also includes
id
column for future references.- .formula
A formula specifying the relationship between the exposure variable and the covariates. For example, w ~ I(cf1^2) + cf2.
- gps_density
Model type which is used for estimating GPS value, including
normal
(default) andkernel
.- sl_lib
A vector of prediction algorithms to be used by the SuperLearner packageg.
- ...
Additional arguments passed to the model.
Value
The function returns a S3 object. Including the following:
.data
:id
,exposure_var
,gps
,e_gps_pred
,e_gps_std_pred
,w_resid
params
: Including the following fields:gps_mx (min and max of gps)
w_mx (min and max of w).
.formula
gps_density
sl_lib
fcall (function call)
Examples
# \donttest{
m_d <- generate_syn_data(sample_size = 100)
data_with_gps <- estimate_gps(.data = m_d,
.formula = w ~ cf1 + cf2 + cf3 + cf4 + cf5 + cf6,
gps_density = "normal",
sl_lib = c("SL.xgboost")
)
# }