Estimates GPS value for each observation using normal or kernel approaches.
Usage
estimate_gps(
  .data,
  .formula,
  gps_density = "normal",
  sl_lib = c("SL.xgboost"),
  ...
)Arguments
- .data
 A data frame of observed continuous exposure variable and observed covariates variable. Also includes
idcolumn for future references.- .formula
 A formula specifying the relationship between the exposure variable and the covariates. For example, w ~ I(cf1^2) + cf2.
- gps_density
 Model type which is used for estimating GPS value, including
normal(default) andkernel.- sl_lib
 A vector of prediction algorithms to be used by the SuperLearner packageg.
- ...
 Additional arguments passed to the model.
Value
The function returns a S3 object. Including the following:
.data:id,exposure_var,gps,e_gps_pred,e_gps_std_pred,w_residparams: Including the following fields:gps_mx (min and max of gps)
w_mx (min and max of w).
.formula
gps_density
sl_lib
fcall (function call)
Examples
# \donttest{
m_d <- generate_syn_data(sample_size = 100)
data_with_gps <- estimate_gps(.data = m_d,
                              .formula = w ~ cf1 + cf2 + cf3 + cf4 + cf5 + cf6,
                              gps_density = "normal",
                              sl_lib = c("SL.xgboost")
                             )
# }