Changelog
Source:NEWS.md
CRE 0.2.5 (2023-12-6)
CRAN release: 2023-12-06
Added
- Add (vanilla) Stability Selection (without Error Control).
-
max_ruleshyper parameters for max rules filtering. - Uncertainty Quantification in estimation by bootstrapping.
-
Bhyper-parameter, -
subsamplehyper-parameter. -
rules(implicit form) in cre() function return. - predict() function for ITE estimation via CRE.
Changed
- Type
stability_selectionbinary -> string (‘no’,‘vanilla’,‘error_control’). - Unify
ntrees_gbmhyper-parameter andntrees_gbmhyper-parameter inntreeshyper-parameter. - In rules generation retrieve decision rules also from internal nodes, and not just from terminal nodes.
-
ite_method_dis,ite_method_infmethod-parameter ->ite_method. -
ps_method_dis,ps_method_infmethod-parameter ->learner_ps. -
oreg_method_dis,oreg_method_infmethod-parameter ->learner_y.
CRE 0.2.1 (2023-3-17)
CRAN release: 2023-03-17
Changed
- Replace BATE with ATE in CATE Linear Decomposition.
- Update
plot()function (remove ATE, old BATE, and explicit AATEs).
CRE 0.2.0 (2023-1-19)
CRAN release: 2023-01-19
Changed
-
offsetmethod-parameter -> hyper-parameter -
estimate_ite_poissonfunction ->estimate_ite_tpoisson -
max_dacayhyper-parameter ->t_decay. -
interpret_select_rulesfunction ->interpret_rules. -
generate_causal_rulesfunction ->discover_rules. -
discover_causal_rulesfunction ->select_rules. -
offset_namemethod parameter ->offset. - Hyper and method parameters are no more required arguments for
cre. -
creobject: added parameters and ite estimation.
Added
- Synthetic data set with 1 or 3 rules (
generate_cre_dataset). - S-Learner (
slearner) method for ITE estimation. - T-Learner (
tlearner) method for ITE estimation. - X-Learner (
xlearner) method for ITE estimation. - Rules Selection description in
summary.cre. -
verboseparameter insummary.cre. -
ite, additionalcreinput parameter to use personalized ite estimations. - Default values for hyper parameters.
- Default values for method parameters.
- Simulation experiments for estimation (
estimation.R). - Simulation experiments for discovery (
discovery.R). -
extract_effect_modifiersfunction (utility for performance evaluation). -
evaluatefunction for discovery evaluation. -
confoundingparameter ingenerate_cre_datasetto set confounding type. -
ite_predandmodelin CRE results. -
binary_covariatesparameter ingenerate_cre_datasetto set covariates domain.
Removed
-
include_ps_infmethod-parameter. -
include_ps_dismethod-parameter. -
oregmethod for ITE estimation. -
ipwmethod for ITE estimation. -
sipwmethod for ITE estimation. - ITE standard deviation estimation.
-
type_decayhyper-parameter. - Keep only
linregfor CATE estimation (removecate_methodandcate_SL_libraryparameters). -
method_paramsandhyper_paramsadditional parameters insummary.cre. - ite standardization for Rules Generation.
-
random_stateparameter. -
include_offsetmethod parameter.
CRE 0.1.1 (2022-10-18)
CRAN release: 2022-10-22
Changed
-
binaryparameter ingenerate_cre_dataset->binary_outcome. -
filter_catehyper-parameter ->t_pvalue. -
t_anomhyper-parameter ->t_ext. -
effect_modifierhyper-parameter ->intervention_vars. -
lasso_rules_filterfunction ->discover_causal_rules. -
split_datafunction ->honest_splitting. -
prune_rulesfunction -> `filter_irrelevant_rules. -
discard_correlated_rulesfunction ->filter_correlated_rules. -
discard_anomalous_rulesfunction ->filter_extreme_rules.
CRE 0.1.0 (2022-10-17)
CRAN release: 2022-10-18
Changed
- Update examples and tests for all functions.
-
qhyper-parameter ->cutoff. -
pfer_valhyper-parameter ->pfer. -
select_causal_rulesfunction ->lasso_rules_filter. -
thyper-parameter ->t_anom. - Separate standardization, and remove filtering from
generate_rules_matrixfunction. -
summary.crefunction to describe results. -
min_nodeshyper-parameter ->node_size(randomForestconvention). -
crereturns an S3 object.
Added
- Examples and tests for all functions.
-
prune_rulesfunction to discard un-predictive rules. -
discard_anomalous_rulesfunction to discard anomalous rules (seet_corrhyper-parameter.). -
discard_correlated_rulesfunction to discard correlated rules (seet_anomhyper-parameter). -
effect_modifiersparameter ingenerate_rulesfunction for covariates filtering. -
generate_causal_rulesfunction. - Helper function with
SuperLearnerpackage for propensity score estimation inestimate_ite_xyz. - Five methods for CATE estimation (
poisson,DRLearner,bart-baggr,cf-means,linreg) inestimate_catefunction. - (
ps_method_dis,ps_method_inf,or_method_dis,or_method_inf,cate_SL_library) method-parameters to complementSuperLearnerpackage. -
cate_methodmethod-parameter to select CATE estimation method. -
filter_catemethod-parameter for estimation filtering. -
pparameter (ingenerate_cre_datasetfunction) to set the number of covariates. -
replaceparameter (ingenerate_rulesfunction) to allow bootstrapping. -
cre.printgeneric function to printcreS3 object results. -
cre.summarygeneric functions to summarizecreS3 object Results. -
check_inputfunction to isolate input checks. -
estimate_ite_aipwfunction for augmented inverse propensity weighting. -
plot.cregeneric function to plotcreS3 object results. -
test-cre_functional.Rto test the functionality of the package. -
stability_selectionfunction for causal rules selection.
CRE 0.0.1 (2021-10-20)
Changed
-
estimate_cateinclude two methods for estimating the CATE values. -
creadded initial checks for binary outcome and whether to include the propensity score in the ITE estimation. -
estimate_ite_xyzconduct propensity score estimation using helper function.
Added
- Example for
generate_cre_dataset. -
set_loggerandget_logger. -
check_input_datafunction. -
generate_cre_datasetfunction to generate synthetic data for testing the package. -
test-generate_cre_datasetfunction test. -
estimate_psfunction to estimate the propensity score. -
estimate_ite_xbartfunction to generate ITE estimates using accelerated BART. -
estimate_ite_xbcffunction to generate ITE estimates using accelerated BCF. -
analyze_sensitivityfunction to conduct sensitivity analysis for unmeasured confounding. -
crefunction to perform the entire Causal Rule Ensemble method. -
estimate_catefunction to generate CATE estimates from the ITE estimates and select rules. -
estimate_itefunction to generate ITE estimates using the user-specified method (calls the otherestimate_ite_xyzfunctions). -
estimate_ite_bartfunction to generate ITE estimates using BART. -
estimate_ite_bcffunction to generate ITE estimates using Bayesian Causal Forests. -
estimate_ite_cffunction to generate ITE estimates using Causal Forests. -
estimate_ite_ipwfunction to generate ITE estimates using IPW. -
estimate_ite_orfunction to generate ITE estimates using Outcome Regression. -
estimate_ite_sipwfunction to generate ITE estimates using SIPW. -
extract_rulesfunction to extract a list of causal rules from randomForest and GBM models. -
generate_rulesfunction to generate causal rule models using randomForest and GBM methods. -
generate_rules_matrixfunction to convert a list of causal rules into a matrix. -
select_causal_rulesfunction to apply penalized regression to causal rules. to select only the most important ones. -
split_datafunction to split input data into discovery and inference subsamples. -
take1function to create a subsample of indices.